-1

suppose $x\in [0,1]$,$$Tf(x)=\int_0^xf(t) \, dt,\\T_nf(x)=\sum_0^{n-1} X_{[{k\over n}, {{k+1}\over n})}(x) \int_0^{k\over n} f(y) \, dy$$,where we have $X_{[{k\over n},{{k+1}\over n})}(x)=1$ if $x\in{[{k\over n},{{k+1}\over n})},$ otherwise $0$.

(1) $\|T-T_n\|\le n^{-1/2}$

(2) prove that $T$ is compact (here is the definition of compact operator:https://en.wikipedia.org/wiki/Compact_operator)

(notice that $T$ is a linear and continuous map from $L^2[0,1]\to L^2[0,1]$)

I don't how to prove the questions above, can someone help me prove it?

2 Answers2

0

Hint: To show $(1)$, use the fact that $\int_{k/n}^{(k+1)/n}f(y)dy=f(y_k)/n, y_k\in [k/n,(k+1)/n]$, then find a bound of $| T(f)(x)-T_n(f)(x)|$.

The image of $T_n$ is in a finite dimensional vector space, (1) implies that $T$ is the limit of $T_n$ so is compact by definition.

0

Let's first look at a fixed $n$. For $x \in \bigl[\frac{k}{n}, \frac{k+1}{n}\bigr)$ we have

$$T_n f(x) = \int_0^{k/n} f(t)\,dt,$$

and therefore

$$Tf(x) - T_nf(x) = \int_{k/n}^x f(t)\,dt.\tag{1}$$

To get a nice bound for $\lvert Tf(x) - T_nf(x)\rvert$ we use the Cauchy-Schwarz inequality,

$$\lvert Tf(x) - T_nf(x)\rvert \leqslant \sqrt{\int_{k/n}^x 1^2\,dt} \cdot \sqrt{\int_{k/n}^x \lvert f(t)\rvert^2\,dt} \leqslant \sqrt{x - \tfrac{k}{n}} \cdot \lVert f\rVert_{L^2([0,1])}.\tag{2}$$

Since $x - \frac{k}{n} < \frac{k+1}{n} - \frac{k}{n} = \frac{1}{n}$, we see that $\lvert Tf(x) - T_nf(x)\rvert \leqslant \frac{1}{\sqrt{n}}\lVert f\rVert_{L^2([0,1])}$ for all $x \in [0,1]$ (the equality $T_nf(1) = Tf(1)$ follows directly from the definitions). Thus we find

$$\lVert (T - T_n)f\rVert_{L^2([0,1])}^2 = \int_0^1 \lvert Tf(x) - T_nf)(x)\rvert^2\,dx \leqslant \int_0^1 \frac{1}{n}\lVert f\rVert_{L^2([0,1])}^2\,dx = \frac{1}{n}\lVert f\rVert_{L^2([0,1])}^2,$$

from which we obtain $\lVert T - T_n\rVert \leqslant n^{-1/2}$ by taking the square root on both sides, and then the supremum over all $f$ with $\lVert f\rVert_{L^2([0,1])} \leqslant 1$. (Aside: if we had used the right hand side of $(2)$ rather than the bound $\sqrt{x - \frac{k}{n}} \leqslant \frac{1}{\sqrt{n}}$ we would have obtained the slightly sharper bound $\lVert T - T_n\rVert \leqslant \frac{1}{\sqrt{2n}}$.)

Now $T_n$ is a continuous linear operator with finite-dimensional range - the range of $T_n$ is spanned by the characteristic functions of the intervals $\bigl[\frac{k}{n}, \frac{k+1}{n}\bigr)$, $0 \leqslant k < n$ - hence compact. And by $\lVert T - T_n\rVert \to 0$, $T$ is the norm-limit of a sequence of compact operators. Since the subspace of compact operators is closed, it follows that $T$ is compact too.

Daniel Fischer
  • 206,697