-2

Prove That $6^n -1$ is composite $\forall n>1 \in \mathbb{N}$

1 Answers1

0

Hint: Use $$(a^n-b^n)=(a-b)(a^{n-1}+a^{n-2}b+...+b^{n-1}).$$

Another method would be to see that $6 \equiv 1 (\mod 5)$ and $6^n \equiv1^n(\mod 5) \equiv 1(\mod 5)$. Now subtract 1 and see what happens.

MrYouMath
  • 15,833