Using Stolz–Cesàro theorem as commented by @AK47.
$L = \lim\limits_{n \rightarrow \infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} \\ = \lim\limits_{n \rightarrow \infty} \frac{(n+1)^k - \frac{(n+1)^{k+1}}{k+1} + \frac{n^{k+1}}{k+1}}{(n+1)^k-n^k}\\ = \lim\limits_{n \rightarrow \infty} \frac{(k-n)(n+1)^k + n^{k+1}}{(k+1)((n+1)^k-n^k)} \\ = \lim\limits_{n \rightarrow \infty}\frac{k\sum\limits_{i=0}^{k}\begin{pmatrix}k \\ i \end{pmatrix}n^i - \sum\limits_{i=0}^{k}\begin{pmatrix}k \\ i \end{pmatrix}n^{i+1} + n^{k+1}}{(k+1)(\sum\limits_{i=0}^{k}\begin{pmatrix}k \\ i \end{pmatrix}n^i - n^k)} \\ = \lim\limits_{n \rightarrow \infty}\frac{k\sum\limits_{i=0}^{k-1}\begin{pmatrix}k \\ i \end{pmatrix}n^i - \sum\limits_{i=0}^{k-2}\begin{pmatrix}k \\ i \end{pmatrix}n^{i+1}}{(k+1)(\sum\limits_{i=0}^{k-1}\begin{pmatrix}k \\ i \end{pmatrix}n^i)}$
Now, divide numerator and denominator by $n^{k-1}$ and take the limit $n \rightarrow \infty$ to get the following,
$= \frac{k\begin{pmatrix}k \\ k-1\end{pmatrix} - \begin{pmatrix}k \\ k-2\end{pmatrix}}{(k+1)\begin{pmatrix}k \\ k-1\end{pmatrix}} = \frac{1}{2}$