Suppose an infinite series converges, $\sum a_n = S > 0,$ and $a_n > 0.$
I know that (arithmetic-geometric inequality) $0 < (\prod_\limits{i=1}^n a_i)^{1/n} < (\sum_\limits{i=1}^n a_i) / n.$
This shows that $\lim_\limits{n \to \infty}(\prod_\limits{i=1}^n a_i)^{1/n} = 0$ since $\lim_\limits{n \to \infty}(\sum_\limits{i=1}^n a_i) / n = S/\infty = 0.$
I want to show
$$\lim_{n \to \infty}n(\prod_{i=1}^n a_i)^{1/n} = 0.$$
I can't continue because $0 < n(\prod_\limits{i=1}^n a_i)^{1/n} < (\sum_\limits{i=1}^n a_i)$ has a limit of the upper bound equal to $S$
Suggestions?