Radix notation has $\color{#c00}P\!$$\textit{olynomial form}$ $\, n = \color{#c00}{P}(10) = d_k 10^k +\cdots + d_2\cdot 10^2 + d_1\cdot 10 + d_0\, $
so $\, {\rm mod}\ 9\!:\, \color{#0a0}{10\equiv 1}\,\Rightarrow\, P(\color{#0a0}{10})\,\equiv\, P(\color{#0a0}1)\,\equiv\, d_k+\cdots + d_1 + d_0 = $ sum of digits $\,d_i,\ $ and
$ {\rm mod}\ 11\!:\, \color{#90f}{10\equiv -1}\,\Rightarrow\, P(\color{#90f}{10})\equiv P(\color{#90f}{-1})\equiv (-1)^k d_k+\cdots - d_1 + d_0 = $ alternating digit sum.
In both cases we employed the the $ $ Polynomial Congruence Rule, $ $ i.e. $\,a\equiv b\,\Rightarrow\,P(a)\equiv P(b),\ $ for any polynomial $\,P(x)\,$ with integer coefficients, and any integers $\,a,b.$
Remark $\ $ These tests are special cases $\,(x = 10)\,$ of results true for any polynomial, namely
$ {\rm mod}\ x\!-\!1\!:\,\ \color{#0a0}{x\ \equiv\ 1}\ \Rightarrow\ P(\color{#0a0}{x})\,\equiv\, P(\color{#0a0}1)\,\equiv\, d_k+\cdots + d_1 + d_0 = $ sum of coef's $\,d_i,\ $ and
$ {\rm mod}\ x\!+\!1\!:\,\ \color{#90f}{x\equiv -1}\,\Rightarrow\, P(\color{#90f}{x})\equiv P(\color{#90f}{-1})\equiv (-1)^k d_k+\cdots - d_1 + d_0 = $ alternating coef sum.
Thus if the coef sum $\,P(1) = 0\,$ then $\,P(x)\equiv P(1)\equiv 0\,\pmod{x\!-\!1}\,\ $ so $\,\ x\!-\!1\mid P(x),$
and, similarly, if $\ P(-1) = 0\,$ then $\,P(x)\equiv P(-1)\equiv 0\pmod{x\!+\!1}\,\ $ so $\,\ x\!+\!1\mid P(x).$
Both are special case of the well-known $ $ Factor Theorem $\,\ x\!-\!a\,\mid\, P(x)-P(a).$
In particular, for $\,x = b = \,$ radix, we get the base $b$ analog of casting out $9$ and $11$ in radix $10$