Consider the following two questions where throughout $X$ is a Banach space, $X'$ denotes its dual and $(f_n)_{n=1}^\infty\subset X'$. We also denote the canonical map $J_X:X\to X''$ where for all $f\in X'$, $(J_Xx)(f)=f(x)$.
$1.$ Using the canonical map, show that if $f_n\rightharpoonup f$ in $X'$ then also $f_n\overset{\star}{\rightharpoonup} f$ in $X'$.
$2.$ Show that if $X$ is reflexice then $f_n\overset{\star}{\rightharpoonup} f$ in $X'$ implies that $f_n\rightharpoonup f$ in $X'$.
Here are my attempts to each question:
Answer to $1:$
To say that $f_n\rightharpoonup f$ in $X'$ means that $\forall\, \psi\in X'',\,\psi(f_n)\to\psi(f)$ in $\mathbb R$ as $n\to\infty$.
But by definition of the second dual, $\forall\, \psi\in X''\,\exists \,x\in X: \psi=J_Xx$ so that $\psi(f)=(J_Xx)(f)=f(x)$.
Consider then that, $\forall\,x\in X$,
$$0\le\|f_n(x)-f(x)\|=\|\psi(f_n)-\psi(f)\|$$
Now $\lim_{n\to\infty}\|\psi(f_n)-\psi(f)\|=0$ so that by the Sandwich theorem we can infer that $\|f_n(x)-f(x)\|\to0$ as $n\to\infty$. But notice,
$$\lim_{n\to\infty}\|f_n(x)-f(x)\|=0\iff f_n(x)\to f(x)\,\,\text{as}\,\, n\to\infty\,\forall\, x\in X$$
But this precisely means that $f_n\overset{\star}{\rightharpoonup} f$ which is what we wanted to show.
Answer to $2:$
To say that $X$ is reflexive means that $\forall\,\psi\in X''\,\exists x\in X:\psi=J_Xx$.
We also note that saying $f_n\overset{\star}{\rightharpoonup} f$ in $X'$ means that $\forall\,x\in X,\,f_n(x)\to f(x)$ in $\mathbb F$ as $n\to \infty$.
Now since $f_n\overset{\star}{\rightharpoonup} f$ we have that,
$$0\le\|f_n(x)-f(x)\|=\|\psi(f_n)-\psi(f)\|$$
By definition of $\psi\in X''$. Now $\forall\, x\in X$ consider the following,
$$0\le\|\psi(f_n)-\psi(f)\|=\|f_n(x)-f(x)\|$$
Taking the limit of the right most term, as we did for the first problem, we see that it converges to zero as $n\to\infty$. So applying the Sandwich theorem again we are able to deduce that,
$$\lim_{n\to\infty}\|\psi(f_n)-\psi(f)\|=0\implies\psi(f_n)\to\psi(f)\,\,\text{as}\,\,n\to\infty$$And this precisely means that $f_n\overset{\star}{\rightharpoonup} f$ which is what we wanted to show.
Is what I have done correct? The part where I am most unsure is where I have invoked the Sandwich theorem.