0

How do i calculate $ \sum_{k=1}^{n} \sin(2k-1)x $, using $e^{i*x}=cos(x) + i*sin(x)$?

1 Answers1

3

Hint: $\sum_{k=1}^n e^{(2k-1)ix}$ is a geometric series.

Robert Israel
  • 448,999
  • With formula for geometric series, i need to have exponent $k$, so i need to transform it somehow. My idea is, that it should look like this:

    $e^{-ix} \sum_{k=1}^{n} e^{2ix^{k}}$

    – Zvnoky Brown Nov 21 '16 at 20:15