How do i calculate $ \sum_{k=1}^{n} \sin(2k-1)x $, using $e^{i*x}=cos(x) + i*sin(x)$?
Asked
Active
Viewed 165 times
How do i calculate $ \sum_{k=1}^{n} \sin(2k-1)x $, using $e^{i*x}=cos(x) + i*sin(x)$?
$e^{-ix} \sum_{k=1}^{n} e^{2ix^{k}}$
– Zvnoky Brown Nov 21 '16 at 20:15