Let $\mathcal E =(e_i)$ be an upper trigonalisation basis for $u$. We thus have that $u$'s matrix in that basis is
$$
A =
\operatorname{Mat}_\mathcal{E}(u) = \begin{pmatrix}
\mu_1 & \cdots & \cdots & (\star) \\
& \mu_2 & & \vdots \\
& & \ddots & \vdots \\
(0) & & & \mu_d
\end{pmatrix}
$$
Let $P:(0,+\infty)\longrightarrow\mathrm{GL}_d(\mathbb C),\; \varepsilon\longmapsto \operatorname{diag}(\varepsilon^{-1},\ldots,\varepsilon^{-n})$. We have that for all $\varepsilon>0$
$$
P(\varepsilon)AP(\varepsilon)^{-1} = (\varepsilon^{j-i}a_{i,j})_{1\leqslant i,j\leqslant d}.
$$
We call $\mathcal B_\varepsilon=(b_i(\varepsilon))$ be the new basis. We define the hermitian product
$$
\langle x|y \rangle_\varepsilon :=
x^i\overline{y^j}
$$
for $x=x^ie_i$, $y=y^ie_i$.
Thus, for all nonzero $x=x^ie_i\in\mathbb R^d$,
\begin{align*}
\langle u(x)|x \rangle_\varepsilon
=
\left\langle
x^i\varepsilon^{k-i}a_{i,k}e_k\mid x^je_j
\right\rangle_\varepsilon
&=
x^i\overline{x^j}\varepsilon^{k-i}a_{i,k}\langle e_k|e_j\rangle_\varepsilon
=
x^i\overline{x^j}\varepsilon^{j-i}a_{i,j}\\
&=
\sum_{i=1}^d \mu_i|x_i|^2 + \underbrace{\sum_{\substack{1\leqslant i,j \leqslant d\\ i\neq j}}\epsilon^{j-i}a_{i,j}x^i\overline{x^j}}\limits_{=:\eta(\varepsilon)}.
\end{align*}
So
$$
\operatorname{Re}\langle u(x)|x\rangle_\varepsilon = \sum_{i=1}\operatorname{Re}(\mu_i)|x_i|^2+\operatorname{Re}\eta(\varepsilon)
$$
We have that $\eta(\varepsilon) = \mathcal O(\varepsilon)$ as $\varepsilon\to 0$. The first term is negative. We thus take $\varepsilon>0$ such that $\operatorname{Re}\langle u(x)|x\rangle_\varepsilon$ is nonpositive, and take the inner product $\langle\,\cdot|\cdot\,\rangle_\varepsilon$ as the answer.