I am studying the Borel Cantelli proof and there is the following step:
$$\Pr\left( \bigcap \limits_{N=1}^{\infty} \bigcup\limits_{n=N}^{\infty}E_n\right) \le \inf_{N\ge1} \Pr\left( \bigcup\limits_{n=N}^{\infty} E_n\right)$$
What happened here? I guess that:
$$\Pr\left(\bigcap \limits_{N=1}^{\infty}\bigcup\limits_{n=N}^{\infty} E_n\right) = \Pr\left(\inf_{N\ge1}\bigcup\limits_{n=N}^{\infty} E_n\right) \le \inf_{N\ge1} \Pr\left( \bigcup\limits_{n=N}^{\infty} E_n\right)$$
But why is this true?