Using induction, we will prove
$$
F_{n+1}F_{n-1}-F_n^2=(-1)^n\tag{1}
$$
Note that $F_2F_0-F_1^2=-1$.
Assume that $F_nF_{n-2}-F_{n-1}^2=(-1)^{n-1}$. Then
$$
\begin{align}
F_{n+1}F_{n-1}-F_n^2
&=(F_n+F_{n-1})F_{n-1}-F_n^2\\
&=F_{n-1}^2-F_n(F_n-F_{n-1})\\
&=F_{n-1}^2-F_nF_{n-2}\\
&=-(-1)^{n-1}\\
&=(-1)^n\tag{2}
\end{align}
$$
Therefore, $(1)$ is true for $n\ge1$.
Dividing $(1)$ by $F_nF_{n-1}$ gives
$$
\frac{F_{n+1}}{F_n}-\frac{F_n}{F_{n-1}}=\frac{(-1)^n}{F_nF_{n-1}}\tag{3}
$$
Since $F_{n+1}\ge F_n$,
$$
\begin{align}
\frac{F_{n+2}F_{n+1}}{F_{n+1}F_n}
&=\frac{F_{n+2}}{F_n}\\
&=\frac{F_{n+1}}{F_n}+1\\[6pt]
&\ge2\tag{4}
\end{align}
$$
Therefore, for $n\ge1$,
$$
F_nF_{n+1}\ge2^{n-1}\tag{5}
$$
Thus, $(3)$ and $(5)$ show that
$$
\begin{align}
\lim_{n\to\infty}\frac{F_{n+1}}{F_n}
&=\frac{F_2}{F_1}+\lim_{n\to\infty}\sum_{k=2}^n\frac{(-1)^k}{F_kF_{k-1}}\\
&=1+\sum_{k=2}^\infty\frac{(-1)^k}{F_kF_{k-1}}\tag{6}
\end{align}
$$
converges.
The recursion for $F_n$ implies
$$
\begin{align}
0
&=\lim_{n\to\infty}\frac{F_{n+2}-F_{n+1}-F_n}{F_n}\\
&=\lim_{n\to\infty}\frac{F_{n+2}}{F_{n+1}}\frac{F_{n+1}}{F_n}-\lim_{n\to\infty}\frac{F_{n+1}}{F_n}-1\\
&=\left(\lim_{n\to\infty}\frac{F_{n+1}}{F_n}\right)^2-\lim_{n\to\infty}\frac{F_{n+1}}{F_n}-1\tag{7}
\end{align}
$$
Equation $(7)$ implies that
$$
\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\frac{1\pm\sqrt5}2\tag{8}
$$
Since $\frac{F_{n+1}}{F_n}\ge1$, $(8)$ implies
$$
\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\frac{1+\sqrt5}2\tag{9}
$$