Prove that $S_3\times \mathbb{Z}_2$ is isomorphic to $D_6$.
My attempt:
I tried to decompose $D_6$ as the internal direct product of subgroups $H$ and $K$ isomorphic to $S_3$ and $\mathbb{Z}_2$ respectively:
Let $H=\{1, r^2, r^4, s, r^2s, r^4s\}$
Let $K=\{1, r^3s\}$
$HK=D_6$
$H\cap K=\{1\}$
However, taking $h=r^2$ and $k=r^3s$, \begin{equation*} \begin{split} hk&=r^2\cdot r^3s \\ &=r^5s \end{split} \end{equation*} \begin{equation*} \begin{split} kh&=r^3s\cdot r^2 \\ &=r^3sr^2ss \\ &=r^3r^{-2}s \\ &= rs \end{split} \end{equation*} $hk\neq kh$
So, this doesn't work. How do I solve this problem?