1

I have one question about some asymptotic property of Zeta functions.

(Proposition 2.7-Ch 6) If $\sigma,t\in \mathbb R$, $|t|\ge1$, $0\le\sigma_0\le1$ and $\sigma_0\le\sigma$, then for every $\varepsilon>0$, there exists a constant $c_\varepsilon$ such that $|\zeta(s)|\le c_\varepsilon|t|^{1-\sigma_{0}+\varepsilon}$ where $s=\sigma+it$.

I tried the proof of this theorem,but I couldn't have more steps from below thing.

$|\zeta(s)|\le |\frac{1}{s-1}|+2|s|^{1-\sigma_0+\varepsilon} \sum_{n=1}^{\infty}{\frac{1}{n^{1+\varepsilon}}}$ .

The first part is easily transformed to the form of $c_{\varepsilon}|t|^{1-\sigma_{0}+\epsilon}$. However, the second summation is difficult.

How can I change the second part to the form of $c_{\varepsilon}|t|^{1-\sigma_{0}+\epsilon}$ ? I have a trouble because of the term of $|s|$.

reuns
  • 77,999
Chris kim
  • 850
  • 7
  • 19
  • Here we have $Re(s) \in (0,1)$ so $\sum_{n=1}^\infty n^{-s}$ diverges... What you need is the convexity bound and the functional equation, see the Phragmén–Lindelöf principle and the Lindelöf hypothesis – reuns Nov 20 '16 at 00:10
  • @user1952009 / The second part is a finite number dominated by $\varepsilon$ because of the series convergence. I want to know the control of the part $2|s|^{1-\sigma_0 +\varepsilon}$ – Chris kim Nov 20 '16 at 00:43
  • What you write doesn't mean anything. How do you show that for $Re(s) \in (0,\sigma_0)$, $|\zeta(s)|\le \frac{1}{|s-1|}+2|s|^{1-\sigma_0+\epsilon} \zeta(1+\epsilon)= \mathcal{O}(|t|^{1-\sigma_0+\epsilon})$ ? – reuns Nov 20 '16 at 00:48
  • @user1952009 / Given assumption of $|s|$ is just $\sigma_0 \le \sigma$. I don't understand why we have to consider the case $Re(s)\in (0,\sigma_0)$. – Chris kim Nov 20 '16 at 00:51
  • First, $\frac{1}{|s-1|} \le 1/|t| = \frac{|t|^{1-\sigma_0+\varepsilon}}{|t|^{2-\sigma_0+\varepsilon}} \le |t|^{1-\sigma_0+\varepsilon}$ because $|t|\ge1$. My question is "How to change the second part $|s|^{1-\sigma_0+\varepsilon }$ into the form of $|t|^{1-\sigma_0+\varepsilon}$". – Chris kim Nov 20 '16 at 01:04
  • @user1952009 Oh, I got a big hint your answers. I didn't catch the fact "$|\sigma+ti| \sim |t|$ as $|t|\rightarrow \infty$. Thank you so much ;) – Chris kim Nov 20 '16 at 01:32
  • @user1952009/ I attached my answers as belows. – Chris kim Nov 20 '16 at 02:43

2 Answers2

2

Steins's method (p.174) is to use that

with $\displaystyle\delta_n(s) = \int_n^{n+1}(n^{-s}-x^{-s})dx = \int_n^{n+1}\int_n^x s t^{-s-1}dtdx\tag{1}$ for $Re(s) > 1$ and by analytic continuation for $Re(s) > 0$ : $\displaystyle\zeta(s)=\frac{1}{s-1}+\sum_{n=1}^\infty \delta_n(s)\tag{2}$

Now $(1)$ gives two inequalities : $|\delta_n(s)| \le |s| n^{-Re(s)-1}$ and $|\delta_n(s)| \le 2n^{-Re(s)}$ so that for any $a \in(0,1)$ : $$|\delta_n(s)| \le (2n^{-Re(s)})^{1-a}(|s| n^{-Re(s)-1})^a=|s|^a 2^{1-a}n^{-Re(s)-a}\tag{3}$$ and summing for $Re(s) > 1-a>0$ : $$\left|\zeta(s)-\frac{1}{s-1}\right| \le \sum_{n=1}^\infty |\delta_n(s)| \le|s|^a 2^{1-a} \sum_{n=1}^\infty n^{-Re(s)-a}=|s|^a 2^{1-a}\zeta(a+Re(s))\tag{4}$$ i.e. for $|t| > 1$ and $1 > Re(s) =\sigma > 1-a>0$ : $$|\zeta(\sigma+it)| \le \frac{1}{\sqrt{(a-1)^2+1}}+(t^2+\sigma^2)^{a/2} 2^{1-a}\zeta(a+\sigma)< 4|t[^a \zeta(a+\sigma)\tag{5}$$

reuns
  • 77,999
0

@user1952009, I attatched the full answer your questions and my questions. Could you review this?

Given conditions are $\sigma,t\in \mathbb R$, $|t|\ge1$, $0\le\sigma_0\le1$ and $\sigma_0\le\sigma$.

Now, I will prove this.

First, $\frac{1}{|s-1|} \le 1/|t| = \frac{|t|^{1-\sigma_0+\varepsilon}}{|t|^{2-\sigma_0+\varepsilon}} \le |t|^{1-\sigma_0+\varepsilon}$ as $|t|\ge1$.

Now, we have to prove the second part. From your hint, there is a positive number $\delta \ge 1$ such that if $|t|>\delta$, then $1/2<\frac{|s|}{|t|}<3/2$ $\Rightarrow$ $|s|^{1-\sigma_0+\varepsilon} \le $ $(3/2)^{1-\sigma_0+\varepsilon}$ $|t|^{{1-\sigma_0+\varepsilon}} $.

Our final obstacles are the case $|t| \le \delta$.

$|s|^{1-\sigma_0+\varepsilon}\le|\delta s|^{1-\sigma_0+\varepsilon} \le (3/2)^{1-\sigma_0+\varepsilon}|\delta t|^{1-\sigma_0+\varepsilon} \le (3\delta/2 )^{1-\sigma_0+\varepsilon} |t|^{1-\sigma_0+\varepsilon} $ because of the part (i).

Since $\delta$ is a constance dominated by 1/2, we are done.

Chris kim
  • 850
  • 7
  • 19
  • This is trivial. What is not is the bound you wrote for $|\zeta(s)|$ – reuns Nov 20 '16 at 02:56
  • $|\zeta(s)|\le |\frac{1}{s-1}|+2|s|^{1-\sigma_0+\varepsilon} \sum_{n=1}^{\infty}{\frac{1}{n^{1+\varepsilon}}} \le (3\delta/2)^{1-\sigma_0+\varepsilon} (1+\sum_{n=1}^{\infty}{\frac{1}{n^{1+\varepsilon}}}) $. The summation is a constant number controlled by $\varepsilon$. – Chris kim Nov 20 '16 at 03:00
  • Oh, the final part should be reviesed. $\le (3\delta/2)^{1-\sigma_0+\varepsilon} (1+\sum_{n=1}^{\infty}{\frac{1}{n^{1+\varepsilon}}})|t|^{1-\sigma_0+\varepsilon} $ You mean this process is totally wrong? – Chris kim Nov 20 '16 at 03:07
  • This is trivial. What about the 1st inequality – reuns Nov 20 '16 at 03:11
  • $\frac{1}{|s-1|} =\frac{1}{\sqrt{(\sigma-1)^2+t^2}} \le 1/|t| = \frac{|t|^{1-\sigma_0+\varepsilon}}{|t|^{2-\sigma_0+\varepsilon}} \le |t|^{1-\sigma_0+\varepsilon}$ as $|t|\ge1$ – Chris kim Nov 20 '16 at 03:15
  • Could you explain what must be added to my proof? I can't find error about my attempt ;) – Chris kim Nov 20 '16 at 03:36