Show that $X_1X_2/\sqrt{X_1^2+X_2^2}$ is normally distributed. Where $X_1\sim N(0,\sigma_1^2),X_2\sim N(0,\sigma_2^2)$. Try to use jacobian transformation$$ U=X_1X_2/\sqrt{X_1^2+X_2^2}$$ $$V=X_1$$but I failed to solve the integration.
Edit, $X_1, X_2$ are independent.
Edit2, my effort so far
I use $ U=X_1X_2/\sqrt{X_1^2+X_2^2}$, $V=X_1$ to do the transformation and I solve for $X_1=V,X_2=\frac{UV}{\sqrt{V^2-U^2}}$.
Then I compute $J=\begin{vmatrix} \frac{\partial X_1}{\partial U}&\frac{\partial X_1}{\partial V}\\ \frac{\partial X_2}{\partial U}&\frac{\partial X_2}{\partial V} \end{vmatrix}=\begin{vmatrix}0&1\\-\frac{V^3}{(V^2-U^2)^{\frac{3}{2}}}&\frac{\partial X_2}{\partial V}\\ \end{vmatrix}=\frac{V^3}{(V^2-U^2)^{\frac{3}{2}}}$
Substituting $|J$| and $U,V$ into $f_{X_1,X_2}(x_1,x_2)=f_{X_1}*f_{X_2}$ and integrate with variable $V$
$$f_U(u)=\int_{-\infty}^{+\infty}\frac{1}{2\pi\sigma_1\sigma_2}exp\left(-\frac{v^2}{2\sigma_1^2}-\frac{u^2v^2}{2\sigma_2^2(v^2-u^2)}\right)*|J|dv=\int_{-\infty}^{+\infty}\frac{1}{2\pi\sigma_1\sigma_2}exp\left(-\frac{v^2}{2\sigma_1^2}-\frac{u^2v^2}{2\sigma_2^2(v^2-u^2)}\right)\frac{v^3}{(v^2-u^2)^{\frac{3}{2}}}dv$$
It seems that the integration will get value $0$, since it's symmetric in $v$.
And, I apologize for not showing my effort when I ask a question. I know it's basic manner to do it but I was lazy.