0

Is there any way I can compute $2^{2014} \mod 11$?

I tried squaring the terms every time, but can't seem to get to $2014$.

Would appreciate your help. Thanks!

Siong Thye Goh
  • 149,520
  • 20
  • 88
  • 149
NAA
  • 227

3 Answers3

3

$$2^{10}\equiv 1 \mod 11$$

$$2^{2014} \equiv 2^{2010+4} \equiv 2^4 \equiv 16 \equiv 5 \mod 11$$

Siong Thye Goh
  • 149,520
  • 20
  • 88
  • 149
2

Note that $$2^5 \equiv -1 \pmod{11} $$ $$\implies (2^5)^{402} \equiv (-1)^{402} \pmod{11} $$ $$\implies 2^{2010}\cdot 2^4 \equiv 1\cdot 2^4 \pmod{11} $$ $$\implies 2^{2014} \equiv 16 \pmod{11}$$ $$\implies \boxed{2^{2014} \equiv 5 \pmod{11} }$$

1

If you are not allowed to use Fermat's little theorem, then just note that $2014 = 1024 + 512 + 256 + 128 + 64 + 16 + 8 + 4 + 2$ so

$2^{2014}\ =\ 2^{1024 + 512 + 256 + 128 + 64 + 16 + 8 + 4 + 2}\ =\ 2^{1024}\cdot2^{512}\cdot2^{256}\cdot2^{128}\cdot2^{64}\cdot2^{16}\cdot2^{8}\cdot2^{4}\cdot2^{2}$

And each one of those factors can be computed by consecutive squaring.

RGS
  • 9,719