Let $p \cong 1 \mod 3$ be prime, and assume that $U_p$ contains a primitive root $x$:
a) Let $z=x^{\frac{(p-1)}{3}}$: show that $z^2 + z + 1 \cong 0 \mod p$.
b) Show that if $t= 2z + 1$, then $2^2 \cong −3 \mod 3$
I'm new to this website so sorry for any mistyped symbols :)