$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\int_{0}^{1}{x^{n} - x^{m} \over \ln\pars{x}}\,\dd x:\ {\large ?}
\,,\qquad n > 0\,,\,\,\,m>0}$.
\begin{align}
\int_{0}^{1}{x^{n} - x^{m} \over \ln\pars{x}}\,\dd x & =
\int_{0}^{1}\pars{x^{n} - x^{m}}\,\,\,
\overbrace{\pars{-\int_{0}^{\infty}x^{t}\,\dd t}}
^{\ds{1 \over \ln\pars{x}}}\,\,\,\dd x =
\int_{0}^{\infty}\int_{0}^{1}\pars{x^{m + t} - x^{n + t}}\dd x\,\dd t
\\[5mm] & =
\int_{0}^{\infty}\pars{{1 \over t + m + 1} - {1 \over t + n + 1}}\dd t =
\left.\ln\pars{t + m + 1 \over t + n + 1}
\right\vert_{\ t\ =\ 0}^{\ t\ \to\ \infty}
\\[5mm] & =
\bbx{\ds{\ln\pars{n + 1 \over m + 1}}}
\end{align}