1

Calculate the limit $$\lim_{n\rightarrow\infty} \sum_{k=1}^{n}\cos\left( \frac{2\pi k}{2n+1} \right).$$

Remark: I need a suggestion, I do not know from what point of view I go along with this exercise

2 Answers2

2

Hint $$\cos\left( \frac{2\pi k}{2n+1} \right)=\mbox{Re}e^{i \frac{2\pi k}{2n+1}}$$

If you don't know complex exponential, you can also multiply by $\sin$ of half increase: $$\sin\left( \frac{\pi }{2n+1} \right)$$ and your sum becomes telescopic.

N. S.
  • 132,525
0

$$ \sum_{k=1}^n \cos\left(\frac{2k\pi}{2n+1}\right)=\mathrm{Re}\sum_{k=1}^n \mathrm{e}^{\frac{2k\pi i}{2n+1}}=\mathrm{Re}\,\mathrm{e}^{\frac{2\pi i}{2n+1}}\frac{\mathrm{e}^{\frac{2n\pi i}{2n+1}}-1}{\mathrm{e}^{\frac{2\pi i}{2n+1}}-1}=\mathrm{Re}\,\mathrm{e}^{\frac{2\pi i}{2n+1}}\frac{\mathrm{e}^{-\frac{\pi i}{2n+1}}-1}{\mathrm{e}^{\frac{2\pi i}{2n+1}}-1}\to -\frac{1}{2} $$

  • In your proof you are using the fact $e^{\frac{2n \pi i}{2n+1}}=e^{\frac{- \pi i}{2n+1}}$. This is not correct, the right thing is $e^{\frac{2n \pi i}{2n+1}}=-e^{\frac{- \pi i}{2n+1}}$. – Diego Fonseca Apr 07 '17 at 02:22