Calculate the limit $$\lim_{n\rightarrow\infty} \sum_{k=1}^{n}\cos\left( \frac{2\pi k}{2n+1} \right).$$
Remark: I need a suggestion, I do not know from what point of view I go along with this exercise
Calculate the limit $$\lim_{n\rightarrow\infty} \sum_{k=1}^{n}\cos\left( \frac{2\pi k}{2n+1} \right).$$
Remark: I need a suggestion, I do not know from what point of view I go along with this exercise
Hint $$\cos\left( \frac{2\pi k}{2n+1} \right)=\mbox{Re}e^{i \frac{2\pi k}{2n+1}}$$
If you don't know complex exponential, you can also multiply by $\sin$ of half increase: $$\sin\left( \frac{\pi }{2n+1} \right)$$ and your sum becomes telescopic.
$$ \sum_{k=1}^n \cos\left(\frac{2k\pi}{2n+1}\right)=\mathrm{Re}\sum_{k=1}^n \mathrm{e}^{\frac{2k\pi i}{2n+1}}=\mathrm{Re}\,\mathrm{e}^{\frac{2\pi i}{2n+1}}\frac{\mathrm{e}^{\frac{2n\pi i}{2n+1}}-1}{\mathrm{e}^{\frac{2\pi i}{2n+1}}-1}=\mathrm{Re}\,\mathrm{e}^{\frac{2\pi i}{2n+1}}\frac{\mathrm{e}^{-\frac{\pi i}{2n+1}}-1}{\mathrm{e}^{\frac{2\pi i}{2n+1}}-1}\to -\frac{1}{2} $$