$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
With $\ds{\quad\pars{~x_{i} \in \mathbb{N}_{\ \geq\ 1}\,,\quad i = 1, 2, \ldots, m~},\quad}$ the number of configurations is given by:
\begin{align}
&\sum_{x_{1}\ =\ 1}^{\infty}\cdots\sum_{x_{m}\ =\ 1}^{\infty}
\bracks{x_{1} + \cdots + x_{m} = n} =
\sum_{x_{1}\ =\ 1}^{\infty}\cdots\sum_{x_{m}\ =\ 1}^{\infty}\,\,\,
\oint_{\verts{z}\ =\ 1^{-}}\,\,\,{1 \over z^{n + 1 - x_{1} - \cdots - x_{m}}}\,
\,\,\,\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\oint_{\verts{z}\ =\ 1^{-}}\,\,\,{1 \over z^{n + 1}}
\pars{\sum_{x = 1}^{\infty}z^{x}}^{m}\,{\dd z \over 2\pi\ic} =
\oint_{\verts{z}\ =\ 1^{-}}\,\,\,{1 \over z^{n + 1}}\,\pars{z \over 1 - z}^{m}
\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\oint_{\verts{z}\ =\ 1^{-}}\,\,\,{1 \over z^{n - m + 1}}\,\,\pars{1 - z}^{-m}
\,\,\,{\dd z \over 2\pi\ic} =
\bracks{z^{n - m}}\pars{1 - z}^{-m}
\\[5mm] = &\
{-m \choose n - m}\pars{-1}^{n - m} =
\braces{{m +\bracks{n - m} - 1\choose n - m}\pars{-1}^{\, n - m}}
\pars{-1}^{\, n - m} = \bbx{\ds{n - 1 \choose n - m}}
\end{align}