Compute the next limit
$$\lim_{n\to\infty}\sum_{i=1}^{n}\frac{1}{n}\left( \frac{1}{\frac{i}{n}+1}\right)$$
I have this
$$\lim_{n\to\infty}\sum_{i=1}^{n}\frac{1}{n}\left( \frac{1}{\frac{i}{n}+1}\right)=\lim_{n\to\infty}\sum_{i=1}^{n}\left( \frac{1}{\frac{ni}{n}+n}\right)=\lim_{n\to\infty}\sum_{i=1}^{n}\left( \frac{1}{i+n}\right)$$
If I use the integral criteria can I get some thing?