I can show the following lemma.
Lemma. If $f$ is real-valued and continuously differentiable on $\mathbb{R}$, then$$\left(\int |f|^2\,dx\right)^2 \le 4\left(\int |xf(x)|^2\,dx\right)\left(\int |f'|^2\,dx\right).$$By integration by parts, $$\int f^2(x)\,dx=xf^2(x)-\int x(f^2(x))'\,dx=xf^2(x)-2\int xf(x) f'(x)\,dx.$$ If $\lim_{x\to\pm\infty} xf(x)^2 = 0$ then the inequality easily follows by using Cauchy–Schwarz inequality.
Question. How do I see Heinsenberg's inequality is true: there exists $c > 0$ such that if $a$, $b \in \mathbb{R}$ and $f$ is in $L^2$, then$$\left(\int (x - a)^2 |f(x)|^2\,dx\right)\left(\int (u - b)^2 |\widehat{f}(u)|^2\,du\right) \ge c\left(\int |f(x)|^2\,dx\right)^2?$$What's the best constant $c$?