If $\alpha = 2\arctan(2\sqrt{2}-1)$ and $\displaystyle \beta = 3\arcsin\left(\frac{1}{3}\right)+\arcsin\left(\frac{3}{5}\right)\;,$ Then prove that $\alpha>\beta$
$\bf{My\; Try::}$ Given $$ \alpha = \arctan \bigg(\frac{2(2\sqrt{2}-1)}{1-(2\sqrt{2}-1)^2}\bigg)=\arctan \bigg(\frac{(2\sqrt{2}-1)}{2\sqrt{2}-4}\bigg)$$
and $$\beta = \arcsin\bigg(1-\frac{4}{27}\bigg)+\arcsin\bigg(\frac{3}{5}\bigg) = \arcsin\bigg(\frac{23}{27}\bigg)+\arcsin\bigg(\frac{3}{5}\bigg)$$
So $$\arcsin\bigg[\frac{23}{27}\cdot \frac{4}{5}+\frac{3}{5}\cdot \frac{10\sqrt{2}}{23}\bigg]$$
Now how can i solve it, Help required, Thanks