Let $\{x \}$ denote the fractional part of a number. E.g. $\{ \pi\} = 0.14159\dots$
In numerical computations I have that, for large values $k \gg 1$:
$$ \bigg\{ \sqrt{k^4 - k^2 + 1} \;\bigg\} \longrightarrow 0.5 $$
For example if $k = 300$ then the value inside the radical is: $8099730001$ and we have from a calculator:
$$ \sqrt{ 300^4 - 300^2 + 1} = 89998.499993 $$
That last decimal place might be wrong, but I get the sense this number is approaching a half-integer. Could it be that:
$$ \sqrt{k^4 - k^2 + 1} = k^2 \sqrt{ 1 - k^{-2} + k^{-4} } \approx k^2 \big( 1 - \frac{1}{2}k^{-2} \big) = k^2 - \frac{1}{2} $$
so I feel like this could never be an integer. How do I make that rigorous?