Let $a_{n},b_{n}\in \mathbb{Q}$ such that $(1+\sqrt{2})^n=a_{n}+b_{n}\sqrt{2}\;,(\forall n\in \mathbb{N}).$Then $\displaystyle \lim_{n\rightarrow \infty}\frac{a_{n}}{b_{n}} = $
$\bf{My\; Try::}$ Using
$$(1+\sqrt{2})^n = 1+\binom{n}{1}(\sqrt{2})+\binom{n}{2}(\sqrt{2})^2+\cdots \cdots +\binom{n}{n}(\sqrt{2})^n$$
So $$a_{n} = \binom{n}{0}+\binom{n}{2}\cdot 2+\binom{n}{4}\cdot 2^2+\cdots \cdots $$
So $$b_{n} = \binom{n}{1}+\binom{n}{3}\cdot 2+\binom{n}{5}\cdot (2)^2+\cdots$$
Now How can i solve $$\lim_{n\rightarrow \infty}\frac{a_{n}}{b_{n}} = $$
Help required, Thanks