I would like to evaluate this limit without using Taylor expansion:
$$\lim_{x \to 0} \frac{e^x-x-1}{x^2}$$ .
Note: by Taylor Expansion i have got :$\frac{1}{2}$ .
Thank u for any help .!!!!
I would like to evaluate this limit without using Taylor expansion:
$$\lim_{x \to 0} \frac{e^x-x-1}{x^2}$$ .
Note: by Taylor Expansion i have got :$\frac{1}{2}$ .
Thank u for any help .!!!!
METHODOLOGY $1$: Use L'Hospital's Rule Successively
Repeated use of L'Hospital's Rule reveals
$$\begin{align} \lim_{x\to 0}\frac{e^x-x-1}{x^2}&=\lim_{x\to 0}\frac{e^x-1}{2x}\\\\ &=\lim_{x\to 0}\frac12 e^x=\frac12 \end{align}$$
METHODOLOGY $2$: Integral representation of the numerator
Note that we can write the numerator as
$$\begin{align} e^x-x-1&=\int_0^x \int_0^t e^s \,ds\,dt\\\\ &=\int_0^x \int_s^x e^s\,dt\,ds\\\\ &=\int_0^x (x-s)e^s\,ds \end{align}$$
Now, we can use the Mean-Value-Theorem for integrals to reveal
$$\begin{align} e^x-x-1&=e^{s^*(x)}\int_0^x(x-s)\,ds\\\\ &=\frac12 x^2e^{s^*(x)} \end{align}$$
for some value of $s^*(x) \in (0,x)$.
Finally, exploiting the continuity of the exponential function yield the coveted limit
$$\begin{align} \lim_{x\to 0}\frac{e^x-x-1}{x^2}&=\lim_{x\to 0}\frac{\frac12 x^2e^{s^*(x)}}{x^2}\\\\ &=\frac12 \end{align}$$
as expected!