This is a duplicate, but let me write the most elementary proof I know :
If $g(z)$ is holomorphic and $|g''(z)| \le C$ then $$ \left|\frac{g(z+h)-g(z)}{h}-g'(z)\right| = \left|\frac{1}{h}\int_z^{z+h} (g'(u)-g'(z))du\right|=\left|\frac{1}{h}\int_z^{z+h}\int_z^u g''(v)dvdu\right|$$ $$\le \frac{1}{|h|}\int_z^{z+h}\int_z^u Cdvdu< |h| C$$
Now let $f_n(z) = n^{-z} = e^{-z \ln n}$, it is holomorphic with derivatives $f_n'(z)= -n^{-z} \ln n,f_n''(z)= n^{-z} \ln^2 n$ and for $Re(z) > 1+\epsilon$ : $|f_n''(z)| < n^{-1-\epsilon}\ln^2 n$.
Let $F(z) = \sum_{n=1}^\infty f_n'(z) = -\sum_{n=1}^\infty n^{-z} \ln n$, note it converges absolutely on $Re(z) > 1$, and for $Re(z) > 1+2\epsilon, |h| < \epsilon$ :
$$\left|\frac{\zeta(z+h)-\zeta(z)}{h}-F(z)\right| \le \sum_{n=1}^\infty \left|\frac{f_n(z+h)-f_n(z)}{h}-f_n'(z)\right|\le|h|\sum_{n=1}^\infty n^{-1-\epsilon}\ln^2 n$$
i.e. for $Re(z) > 1+2\epsilon$ :
$$\zeta'(z) = \lim_{h \to 0} \frac{\zeta(z+h)-\zeta(z)}{h} = F(z) = -\sum_{n=1}^\infty n^{-z} \ln n$$
so that $\zeta(z)$ is holomorphic on $Re(z) > 1+2\epsilon$ for every $\epsilon > 0$,
and hence on $Re(z) > 1$.