Let $f: \mathbb{R} → \mathbb{R}$. Suppose that for all $x, t ∈ \mathbb{R}$ we have to $|f(x) − f(t)| ≤ |x − t|^{1+α}$ , For α> 0. Show that $f$ is constant
I tried the following way: $0 ≤ |f(x) − f(t)/x − t| ≤ |x − t|^{α}$ And using the sandwich theorem to conclude $|f(x) − f(t)/x − t|=0$ so $f(x) − f(t)/x − t=0$ so $f(x) − f(t)=0$ so $f(x)=f(t)$ so f is constant.. It is well?