Here's my work so far:
- base case: $n=1$
$2^1 = 2$ , $2>1$ - induction hypothesis:
$p(k) = 2^k > k$ $\quad \forall$ $k>0$
- induction step:
$p(k+1) = 2^k+1 > k$ $\quad \forall$ $(k+1)>0$
$2^k+1 = 2^k\cdot 2 = 2^k + 2^k$
$2^k + 2^k > k+1$
$2^k + 2$
$2^k + 2 > k+1$