0

I am interested in evaluation $\lim_{x\to ∞} \left(\sqrt{x^2+4x+1}-x \right)$.

I tried to multiply it by ($\sqrt{x^2+4x+1}+x$) but didn't seem like it did worked.

Alyssa x
  • 135

2 Answers2

3

$$\lim_{x \to \infty} \sqrt{x^2+4x+1}-x = \lim_{x \to \infty} \frac{x^2+4x+1-x^2}{\sqrt{x^2+4x+1}+x}= \lim_{x \to \infty} \frac{4x+1}{|x|\sqrt{1+\frac{4}{x}+\frac{1}{x^2}}+x}\\= \lim_{x \to \infty} \frac{4+\frac{1}{x}}{\sqrt{1+\frac{4}{x}+\frac{1}{x^2}}+1}$$

N. S.
  • 132,525
1

I thought it might be instructive to present a way forward that does not rationalize the term of interest. Rather, we rely on the Generalized Binomial Theorem. To that end, we proceed.

Applying the Generalized Binomial Theorem to the square root reveals

$$\begin{align} \lim_{x\to \infty}\left(\sqrt{x^2+4x+1}-x\right)&=\lim_{x\to \infty}\left(x\left(1+\frac{4x+1}{x^2}\right)^{1/2}-x\right)\\\\ &=\lim_{x\to \infty}\left(\frac{4x+1}{2x}+O\left(\frac1{x}\right)\right)\\\\ &=2 \end{align}$$

Mark Viola
  • 179,405