Find $\displaystyle \lim_{x\to -\infty}\left(\frac{\ln(2^x + 1)}{\ln(3^x+ 1)}\right)$.
$\displaystyle \lim_{x\to -\infty}\left(\frac{\ln(2^x + 1)}{\ln(3^x+ 1)}\right)$ = $\displaystyle \lim_{x\to -\infty}\left(\frac{\ln2^x + \ln(1+\frac{1}{2^x})}{\ln3^x + \ln(1+\frac{1}{3^x})}\right)$ = $\displaystyle \lim_{x\to -\infty}\left(\frac{\ln2^x + \frac{1}{2^x}\ln(1+\frac{1}{2^x})^{2^{x}}}{\ln3^x + \frac{1}{3^x}\ln(1+\frac{1}{3^x})^{3^{x}}}\right)$ = $\cdots$
This method is not working.