I suppose that we could assume that these expressions will have the same form since
$$P_3=\prod_{n=1}^m\frac{n}{3n-1}=3^{-m}\frac{ \Gamma \left(\frac{2}{3}\right) \Gamma (m+1)}{\Gamma
\left(m+\frac{2}{3}\right)}$$
$$P_4=\prod_{n=1}^m\frac{n}{4n-1}=4^{-m}\frac{ \Gamma \left(\frac{3}{4}\right) \Gamma (m+1)}{\Gamma
\left(m+\frac{3}{4}\right)}$$
$$P_5=\prod_{n=1}^m\frac{n}{5n-1}=5^{-m}\frac{ \Gamma \left(\frac{4}{5}\right) \Gamma (m+1)}{\Gamma
\left(m+\frac{4}{5}\right)}$$
$$P_6=\prod_{n=1}^m\frac{n}{6n-1}=6^{-m}\frac{ \Gamma \left(\frac{5}{6}\right) \Gamma (m+1)}{\Gamma
\left(m+\frac{5}{6}\right)}$$ where a quite clear patterm appears.
This makes the summations to be
$$S_3=\sum_{m=0}^\infty \prod_{n=1}^m\frac{n}{3n-1}=\sum_{m=0}^\infty P_3=\, _2F_1\left(1,1;\frac{2}{3};\frac{1}{3}\right)$$
$$S_4=\sum_{m=0}^\infty \prod_{n=1}^m\frac{n}{4n-1}=\sum_{m=0}^\infty P_4=\, _2F_1\left(1,1;\frac{3}{4};\frac{1}{4}\right)$$
$$S_5=\sum_{m=0}^\infty \prod_{n=1}^m\frac{n}{5n-1}=\sum_{m=0}^\infty P_5=\, _2F_1\left(1,1;\frac{4}{5};\frac{1}{5}\right)$$
$$S_6=\sum_{m=0}^\infty \prod_{n=1}^m\frac{n}{6n-1}=\sum_{m=0}^\infty P_6=\, _2F_1\left(1,1;\frac{5}{6};\frac{1}{6}\right)$$
where a quite clear pattern appears.
Expanding, we then have (before any simplifications)
$$S_3=\frac{3}{2}+\frac{\log \left(1+\frac{1}{2^{2/3}}-\frac{1}{\sqrt[3]{2}}\right)}{4
\sqrt[3]{2}}-\frac{\log \left(1+\frac{1}{\sqrt[3]{2}}\right)}{2
\sqrt[3]{2}}-\frac{\sqrt{3} \cot ^{-1}\left(\frac{1-2
\sqrt[3]{2}}{\sqrt{3}}\right)}{2 \sqrt[3]{2}}$$
$$S_4=\frac{4}{3}+\frac{\log
\left(1+\frac{1}{\sqrt{3}}-\frac{\sqrt{2}}{\sqrt[4]{3}}\right)}{3 \sqrt{2}
\sqrt[4]{3}}-\frac{\log
\left(1+\frac{1}{\sqrt{3}}+\frac{\sqrt{2}}{\sqrt[4]{3}}\right)}{3 \sqrt{2}
\sqrt[4]{3}}+\frac{\sqrt{2} \cot ^{-1}\left(\sqrt{2} \sqrt[4]{3}
\left(1-\frac{1}{\sqrt{2} \sqrt[4]{3}}\right)\right)}{3
\sqrt[4]{3}}+\frac{\sqrt{2} \cot ^{-1}\left(\sqrt{2} \sqrt[4]{3}
\left(1+\frac{1}{\sqrt{2} \sqrt[4]{3}}\right)\right)}{3 \sqrt[4]{3}}$$
$$S_5=\frac{5}{4}-\frac{\log \left(1+\frac{1}{2^{2/5}}\right)}{4\
2^{2/5}}-\frac{\left(\sqrt{5}-1\right) \log
\left(1+\frac{1}{2^{4/5}}-\frac{1-\sqrt{5}}{2\ 2^{2/5}}\right)}{16\
2^{2/5}}-\frac{\left(-1-\sqrt{5}\right) \log
\left(1+\frac{1}{2^{4/5}}-\frac{1+\sqrt{5}}{2\ 2^{2/5}}\right)}{16\
2^{2/5}}+\frac{\sqrt{\frac{5}{8}+\frac{\sqrt{5}}{8}} \cot
^{-1}\left(\frac{2^{2/5} \left(1-\frac{1-\sqrt{5}}{4\
2^{2/5}}\right)}{\sqrt{\frac{5}{8}+\frac{\sqrt{5}}{8}}}\right)}{2\
2^{2/5}}+\frac{\sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}} \cot
^{-1}\left(\frac{2^{2/5} \left(1-\frac{1+\sqrt{5}}{4\
2^{2/5}}\right)}{\sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}}\right)}{2\ 2^{2/5}}$$
$$S_6=\frac{6}{5}+\frac{\sqrt{3} \log
\left(1+\frac{1}{\sqrt[3]{5}}-\frac{\sqrt{3}}{\sqrt[6]{5}}\right)}{10
\sqrt[6]{5}}-\frac{\sqrt{3} \log
\left(1+\frac{1}{\sqrt[3]{5}}+\frac{\sqrt{3}}{\sqrt[6]{5}}\right)}{10
\sqrt[6]{5}}+\frac{2 \cot ^{-1}\left(\sqrt[6]{5}\right)}{5
\sqrt[6]{5}}+\frac{\cot ^{-1}\left(2 \sqrt[6]{5} \left(1-\frac{\sqrt{3}}{2
\sqrt[6]{5}}\right)\right)}{5 \sqrt[6]{5}}+\frac{\cot ^{-1}\left(2
\sqrt[6]{5} \left(1+\frac{\sqrt{3}}{2 \sqrt[6]{5}}\right)\right)}{5
\sqrt[6]{5}}$$
Now, for sure, you can recombine the logarithms and the arccotangents terms to arrive to the kind of expressions you posted for $S_3$ and $S_4$ because the coefficients are the same (same for $S_6$).
For $S_5$ and $S_6$, if feasible for the logarithms, it seems that it could be much more tedious with the arccotangents terms.
In my opinion, the simplest "closed" forms should be the hypergeometric functions.