1

I am trying to prove that $\lim_{x\to0} \int_{x}^{1 \over x} {(\cos 2r-\cos r) \over r} dr$ exists. Wolframalpha gives me the value ${\int_{0}^{\infty} {(\cos 2x-\cos x)\over x} dx} = -\ln2$, but I don't know where to start, based only on this information. The question is in the book "Real Analysis and Foundations" by S. Krantz.

2 Answers2

1

$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$

$\ds{\lim_{x \to 0^{+}}\ \int_{x}^{1/x}{\cos\pars{2r} - \cos\pars{r} \over r} \,\dd r:\ {\large ?}}$.

\begin{align} &\lim_{x \to 0^{+}}\ \int_{x}^{1/x}{\cos\pars{2r} - \cos\pars{r} \over r}\,\dd r = \int_{0}^{\infty}\bracks{\cos\pars{2r} - \cos\pars{r}}\ \overbrace{% \int_{0}^{\infty}\expo{-rt}\,\dd t}^{\ds{1 \over r}}\,\dd r \\[5mm] = &\ \Re\int_{0}^{\infty}\int_{0}^{\infty} \bracks{\expo{\pars{-t + 2\ic}r} - \expo{\pars{-t + \ic}r}}\dd r\,\dd t = \Re\int_{0}^{\infty}\pars{-\,{1 \over -t + 2\ic} + {1 \over -t + \ic}}\,\dd t \\[5mm] = &\ \left. \Re\ln\pars{t - 2\ic \over t - \ic} \right\vert_{\ t\ =\ 0}^{\ t\ \to\ \infty} =\ \bbox[10px,#ffe,border:1px dotted navy]{\ds{-\ln\pars{2}}} \end{align}

Felix Marin
  • 89,464
0

Hint:

$\lim_{x\to0} \int_{x}^{1 \over x} {(\cos 2r-\cos r) \over r} dr$

$=\lim_{x\to0} \int_{x}^{1 \over x} (\cos 2r-\cos r) d(\ln r)$

$=\lim_{x\to0} \int_{x}^{1 \over x} \cos 2r\, d(\ln r) - \int_{x}^{1 \over x} \cos r\,d(\ln r)$

Using integration by parts should help