Let $(a_n)$ be a sequence of positive terms and suppose that $\sum_\limits{n=0}^{\infty} a_n$ converges. Show that $\sum_\limits{n=0}^{\infty} a_n^2$ converges.
This is in the section on the Comparison Test so that must be what I'm supposed to use. But I don't see how. $(a_n)^2$ might be smaller or larger than $a_n$ depending on $a_n$. And I can't use the Comparison Test with some other series because there's no info here about how fast $\sum a_n$ converges. Hmm. Any hints?