Suppose we have the overdetermined linear system in $\mathrm x \in \mathbb R^n$
$$\mathrm A \mathrm x = \mathrm b$$
where $\mathrm A \in \mathbb R^{m \times n}$ and $\mathrm b \in \mathbb R^m$ are given, and $m > n$. The normal equations are
$$\mathrm A^{\top} \mathrm A \mathrm x = \mathrm A^{\top} \mathrm b$$
If $\mathrm A$ has full column rank, then $\mathrm A^{\top} \mathrm A$ is invertible and, thus, the unique least-squares solution is
$$\hat{\mathrm x} := (\mathrm A^{\top} \mathrm A)^{-1} \mathrm A^{\top} \mathrm b$$
Consider now the augmented linear system
$$\begin{bmatrix} \mathrm A\\ \mathrm C \mathrm A\end{bmatrix} \mathrm x = \begin{bmatrix} \mathrm b\\ \mathrm C \mathrm b\end{bmatrix}$$
where $\mathrm C \in \mathbb R^{p \times m}$. We append $p$ equations to the original linear system, $\mathrm A \mathrm x = \mathrm b$, and each of these $p$ equations is a linear combination of the equations of the original linear system. The normal equations for the augmented linear system are
$$\begin{bmatrix} \mathrm A\\ \mathrm C \mathrm A\end{bmatrix}^{\top} \begin{bmatrix} \mathrm A\\ \mathrm C \mathrm A\end{bmatrix} \mathrm x = \begin{bmatrix} \mathrm A\\ \mathrm C \mathrm A\end{bmatrix}^{\top} \begin{bmatrix} \mathrm b\\ \mathrm C \mathrm b\end{bmatrix}$$
which yields
$$\mathrm A^{\top} ( \mathrm I_m + \mathrm C^{\top} \mathrm C ) \, \mathrm A \mathrm x = \mathrm A^{\top} ( \mathrm I_m + \mathrm C^{\top} \mathrm C ) \, \mathrm b$$
Note that $\mathrm I_m + \mathrm C^{\top} \mathrm C$ is positive definite. If $\mathrm A$ has full column rank, then matrix $\mathrm A^{\top} ( \mathrm I_m + \mathrm C^{\top} \mathrm C ) \, \mathrm A$ is invertible and the unique least-squares solution for the augmented system is
$$\boxed{\hat{\mathrm x}_{\text{aug}} = \left( \mathrm A^{\top} ( \mathrm I_m + \mathrm C^{\top} \mathrm C ) \, \mathrm A \right)^{-1} \mathrm A^{\top} ( \mathrm I_m + \mathrm C^{\top} \mathrm C ) \, \mathrm b}$$
If the original linear system is consistent, i.e., $\mathrm A \hat{\mathrm x} = \mathrm b$, then
$$\hat{\mathrm x}_{\text{aug}} = \left( \mathrm A^{\top} ( \mathrm I_m + \mathrm C^{\top} \mathrm C ) \, \mathrm A \right)^{-1} \mathrm A^{\top} ( \mathrm I_m + \mathrm C^{\top} \mathrm C ) \, \mathrm A \hat{\mathrm x} = \hat{\mathrm x}$$
In words, if the original linear system is consistent, then the least-squares solutions of the original and augmented linear systems are the same.
$\boxed{\mathrm C = \gamma \mathrm I_m}$
If $\mathrm C = \gamma \mathrm I_m$, then
$$\mathrm I_m + \mathrm C^{\top} \mathrm C = (1+\gamma^2) \mathrm I_m$$
and the normal equations for the original and for the augmented linear systems are the same. Thus, the least-squares solutions for the original and for the augmented linear systems are also the same, whether the original linear system is consistent or not.