$$\lim\limits_{n\rightarrow \infty}1+\sqrt{2+\sqrt[3]{3+…\sqrt[n]{n}}}$$
Any hint will be appreciated
$$\lim\limits_{n\rightarrow \infty}1+\sqrt{2+\sqrt[3]{3+…\sqrt[n]{n}}}$$
Any hint will be appreciated
The limit exist (since the sequence is increasing and bounded), but it has probably no close form.
By matlab,
function [f]=fxy(x,y)
if x==1
f=y^(1/y);
else
f=(y+fxy(x-1,y+1))^(1/y);
end
and
format long
for n=1:1:20
f(n)=fxy(n,1);
end
plot(f,'o')
and we have $$\lim_{n\to\infty}f(n,1)\approx2.911639216245824$$