0

Evalulate $\lim\limits_{x \to ∞} (x-x^2 \ln(1+1/x))$

I know the answer is 1/2 and we have to make use of the exponential function but i can't seem to simplify the expression to get the answer, please help

1 Answers1

1

$$\lim_{x\to\infty}\left[x-x^2\log\left(1+\frac1x\right)\right]=\lim_{x\to\infty}\frac{\frac1x-\log\left(1+\frac1x\right)}{\frac1{x^2}}\stackrel{\text{l'Hospital}}=$$

$$=\lim_{x\to\infty}\frac{-\frac1{x^2}+\frac1{x^2}\frac x{1+x}}{-\frac2{x^3}}=-\frac12\lim_{x\to\infty}\left(x-\frac{x^2}{x+1}\right)=-\frac12\lim_{x\to\infty}\frac{-x}{x+1}=\frac12$$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287