Im trying to follow Keith Conrad's notes on Fermats Last Theorem for regular primes but I'm having trouble with some unfamiliar notation. Half way down page three he begins talking about a congruence which I'm not sure about. Namely, $y(\zeta - \zeta^{-1})$$ \equiv 0 $ mod p$\mathbb Z[\zeta]$.
My initial thought was that perhaps it's just reminding me what ring we are working in and I just just treat it as (mod p) but he uses (mod p) many times so there must be some subtle difference I'm not grasping. (He also uses mod p$\mathbb Z$)