Your limit is a root of the degree $8$ polynomial $(((x^2-a)^2-a)^2-a)-x$.
As seen in Exploring 3-cycle points for quadratic iterations, if $b = \frac {1+\sqrt{4a-7}}2$
it factors over $\Bbb Q(b)$ as $(x^2-a-x)P(x)\overline{P}(x)$
where $P(x) = x^3+bx^2+(b-a-1)x+(a-ab-1)$
and $\overline P(x) = x^3+\overline bx^2+(\overline b-a-1)x+(a-a\overline b-1) \\
= x^3+(1-b)x^2+(-a-b)x+(ab-1))$.
The root you are interested in is not a fixpoint of $x \mapsto x^2-a$ so it is a root of one of the two cubics. Since the signs are $+,+,-$, the cubic should have two positive and one negative root when $a \ge 7/4$
When $a \to \infty, a \sim b^2$, so the second cubic is "equivalent" to $x^3-bx^2-b^2x+b^3 = (x-b)^2(x+b)$, so this is the right one, and you want to solve it.
Now, if $y=x^2-a$ and $z=y^2-a$ are the two conjugates of your root $x$ then Galois theory predicts that $(x+\zeta_3y+\zeta_3^2z)^3$ is a polynomial expression in $b$ (and $\zeta_3$), so we need to find it, take the right cube root, then deduce $x,y,z$ from $x+\zeta_3y+\zeta_3^2z$, its conjugate, and $x+y+z$.
$(x+\zeta_3y+\zeta_3^2z)^3 - (x+y+z)^3= 3((\zeta_3-1)(x^2y+y^2z+z^2x)+(\zeta_3^2-1)(xy^2+yz^2+zx^2))$
But
$x^2y+y^2z+z^2x = y(y+a)+z(z+a)+x(x+a) \\
= x^2+y^2+z^2+a(x+y+z) \\
= (x+y+z)(a+x+y+z) - 2(xy+yz+zx) = (b-1)(a+b-1)-2(-a-b)\\
= ab+b^2+a+1 \\
= ab+(a+b-2)+a+1 \\
= ab+2a+b-1
$
and
$xy^2+yz^2+zx^2 = x(z+a)+y(x+a)+z(y+a) \\
= xz+yx+zy+a(x+y+z) \\
= (-a-b)+a(b-1) \\
= ab-2a-b
$
so that
$(x+\zeta_3y+\zeta_3^2z)^3 \\
= (b-1)^3 - \frac 92 (2ab+1) + \frac 32 \sqrt{-3}(4a+2b-1) \\
= (ab-2a-b+3) - \frac 92 (2ab+1) + \frac 32 \sqrt{-3}(4a+2b-1) \\
= -(8ab+2a+b)+\frac{15}2 + \frac 32 \sqrt{-3}(4a+2b-1) \\
= ((-2b+\frac 12) + \frac 32 \sqrt{-3})(4a+2b-1) \\
= -(4a+2b-1)^{\frac 32} \exp(i \arctan {\frac {3\sqrt 3}{1-4b}})
$
Since $x,z >0$ and $y<0$, the argument of $(x+\zeta_3y+\zeta_3^2z)$ is the one near $-\pi/3$, and so
$(x+\zeta_3y+\zeta_3^2z) = (4a+2b-1)^{\frac 12} \exp(i \frac 13( \arctan {\frac {3\sqrt 3}{1-4b} - \pi}))$
Taking twice the real part, we obtain
$2x-y-z = 2(4a+2b-1)^{\frac 12} \cos(\frac 13( \arctan {\frac {3\sqrt 3}{1-4b} - \pi}))$
Adding $x+y+z = b-1$, we obtain
$3x = b-1 + 2(4a+2b-1)^{\frac 12} \cos(\frac 13( \arctan {\frac {3\sqrt 3}{1-4b}} - \pi))$
since $\cos(\frac 13( \arctan {\frac {3\sqrt 3}{1-4b}} - \pi))
= \cos(\frac 13( \arctan {\frac {3\sqrt 3}{4b-1}} + \pi))
= \cos(\frac 13( \frac \pi 2 - \arctan {\frac {4b-1}{3\sqrt 3}} + \pi)) \\
= \cos(\frac \pi 2 - \frac 13( \arctan {\frac {4b-1}{3\sqrt 3}}))
= \sin( \frac 13( \arctan {\frac {4b-1}{3\sqrt 3}}))$
we obtain the same formula.