$\overbrace{\rm\alpha\!\neq\! 0\,\Rightarrow\, 0\!\ne\!\color{#c00}{\alpha}\bar\alpha\! =\! \color{#0a0}n\in \Bbb Z}^{\rm \color{#0a0}n\ \in\ \Bbb Z\, \text{ is a simpler multiple of }\,\color{#c00}{\alpha}},\,$ so $\,\bar \alpha\,$ times $\rm\: \alpha\:\! x = \beta\,$ $\rm\Rightarrow\, n\:\! x = \bar\alpha\beta, \:$ i.e. in fraction language
$$\rm\: \underbrace{x = \dfrac{\beta}{\color{#c00}{\alpha}} = \dfrac{\bar\alpha\beta}{\bar\alpha\alpha} = \dfrac{\bar\alpha\beta}{\color{#0a0}n}}_{\begin{align} \text{transform division by $\color{#c00}{\rm algebraic}$}\\ \text{to a simpler division by $\rm\color{#0a0}{integer}$}\end{align}}\qquad$$
This is known as rationalizing the denominator. The key idea is that every irrational algebraic $\,\alpha\,$ has a "simpler" (i.e. rational) multiple, its norm $\,\color{#0a0}{\rm n} = \alpha\bar \alpha,\,$ so we can reduce division by an irrational $\,\color{#c00}{\alpha}$ to division by the rational $\,\color{#0a0}{\rm n},\,$ which is simpler. This is a prototypical special case of the general method of simpler multiples.