How do I prove this theorem?
For a prime number $p$ and integer $i$:
If $0 < i < p$ then $p \mid \binom{p}{i}$.
How do I prove this theorem?
For a prime number $p$ and integer $i$:
If $0 < i < p$ then $p \mid \binom{p}{i}$.
Hint: The simplest proof uses the relation $$\binom pk=\frac pk\binom{p-1}{k-1} \quad\text{for all}\; k>0 $$ and Gauss' lemma.