Denote the $\mathbb{Z}$-module $\prod_{i\in\mathbb{N}}\mathbb{Z}$ by $M$ and define $R:=\text{End}_{\mathbb{Z}}(M).$ We have two functions $\phi_1,\phi_2\in R$ satisfying $$\phi_1(a_1,a_2,a_3,\dots)=(a_1,a_3,a_5,\dots),\qquad\phi_2(a_1,a_2,a_3,\dots)=(a_2,a_4,a_6,\dots).$$
Claim. $\{\phi_1,\phi_2\}$ is a free basis of the left $R$-module $R$.
Hint. Define maps $$\psi_1(a_1,a_2,a_3,\dots)=(a_1,0,a_2,0,\dots),\qquad\psi_2(a_1,a_2,a_3,\dots)=(0,a_1,0,a_2,\dots)$$ and show $\phi_i\psi_i=1,~\phi_1\psi_2=0=\phi_2\psi_1,~\psi_1\phi_1+\psi_2\phi_2=id$.
Do we mean $\phi_i\psi_i=\phi_i\circ\psi_i$? If yes, then the identities hold! And what is a free basis?
So we need two things to show:
- For every $f\in R$ we find functions $f_1,f_2\in R$ such that $$f=f_1\phi_1+f_2\phi_2.$$
- $f_1\phi_1+f_2\phi_2=0\Rightarrow f_1=f_2=0\quad\forall f_1,f_2\in R.$
Then the left $R$-module $R$ has a basis and is free. I guess this is meant by free basis.
Any ideas how I can prove the claim?
Thanks you.