$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
The coveted PDF is given by the following multiple integration:
\begin{align}
&\int_{0}^{\infty}\theta\expo{-\theta x_{1}}\ldots
\int_{0}^{\infty}\theta\expo{-\theta x_{n}}
\delta\pars{x - {1 \over n}\sum_{\ell = 1}^{n}x_{\ell}}\dd x_{1}\ldots\dd x_{n}
\label{1}\tag{1}
\end{align}
Since integrations are performed over $\ds{\pars{0,\infty}^{\, n}}$, it's convenient to use a Dirac Delta Laplace Integral Representation. Namely,
\begin{equation}
\delta\pars{\xi} \equiv \int_{c -\infty\ic}^{c + \infty\ic}\expo{\xi s}\,
{\dd s \over 2\pi\ic}\,,\qquad c > 0
\end{equation}
Expression \eqref{1} becomes:
\begin{align}
&\int_{0}^{\infty}\theta\expo{-\theta x_{1}}\ldots
\int_{0}^{\infty}\theta\expo{-\theta x_{n}}
\int_{c -\infty\ic}^{c + \infty\ic}
\exp\pars{s\bracks{x - {1 \over n}\sum_{\ell = 1}^{n}x_{\ell}}}
\,{\dd s \over 2\pi\ic}\,\dd x_{1}\ldots\dd x_{n}
\\[5mm] = &\
\int_{c -\infty\ic}^{c + \infty\ic}\expo{xs}
\pars{\int_{0}^{\infty}\theta\expo{-\theta\xi}\expo{-s\xi/n}\,\dd\xi}^{n}\,
{\dd s \over 2\pi\ic}\label{2}\tag{2}
\end{align}
Note that
$\ds{\int_{0}^{\infty}\theta\expo{-\theta\xi}\expo{-s\xi/n}\,\dd\xi =
{n\theta \over s + n\theta}}$. Then, expression \eqref{2} becomes:
\begin{align}
&\int_{c - \infty\ic}^{c + \infty\ic}\expo{xs}
\pars{n\theta \over s + n\theta}^{n}\,{\dd s \over 2\pi\ic} =
\pars{n\theta}^{n}\expo{-n\theta x}\ \overbrace{%
\int_{c + n\theta - \infty\ic}^{c + n\theta + \infty\ic}
{\expo{xs} \over k^{n}}\,{\dd s \over 2\pi\ic}}
^{\ds{x^{n - 1} \over \pars{n - 1}!}}
=
\bbox[#ffe,10px,border:1px dotted navy]{\ds{%
{\pars{n\theta}^{n} \over \pars{n - 1}!}\,x^{n - 1}
\expo{-n\theta x}}}
\end{align}