204

The numbers $14$ and $21$ are quite interesting.

The prime factorisation of $14$ is $2\cdot 7$ and the prime factorisation of $14+1$ is $3\cdot 5$. Note that $3$ is the prime after $2$ and $5$ is the prime before $7$.

Similarly, the prime factorisation of $21$ is $7\cdot 3$ and the prime factorisation of $21+1$ is $11\cdot 2$. Again, $11$ is the prime after $7$ and $2$ is the prime before $3$.

In other words, they both satisfy the following definition:

Definition: A positive integer $n$ is called interesting if it has a prime factorisation $n=pq$ with $p\ne q$ such that the prime factorisation of $n+1$ is $p'q'$ where $p'$ is the prime after $p$ and $q'$ the prime before $q$.

Are there other interesting numbers?

Bill Dubuque
  • 272,048
Simon Parker
  • 4,303

1 Answers1

282

Note that exactly one of $n$ and $n+1$ is even. It follows that for $n$ to be interesting, either $n=3p$ and $n+1=2N(p)$ or $n=2p$ and $n+1=3P(p)$, where $P(p)$ and $N(p)$ are the previous and next primes to $p$ respectively. Rearranging we get that $p$ must satisfy one of the following two equations: $$\frac{3p+1}2=N(p)\tag1$$ $$\frac{2p+1}3=P(p)\tag2$$ However, by a 1952 result of Jitsuro Nagura, for $p\ge25$ there is always a prime between $p$ and $\frac65p$. In particular, if $p\ge31$ is a prime: $$\frac56p<P(p)<p<N(p)<\frac65p$$ But when $p\ge31$ the following inequalities are also true: $$\frac{2p+1}3<\frac56p\qquad\frac65p<\frac{3p+1}2$$ Therefore, if $p$ is to satisfy $(1)$ or $(2)$ above, it must be less than 31. This leaves a handful of cases to check for $p$, and we find that the only interesting numbers are 14 and 21 as conjectured.


The Nagura paper is a reference in the Wikipedia article on Bertrand's postulate. While those in the comments had saw it, sketching out the approach I use here, I already knew what to do; I did not read those comments in detail until after posting my answer.

Parcly Taxel
  • 103,344
  • 17
    For the record, it is worth pointing out that this method was previously sketched in the comments to the question by Barry Cipra and Arthur, including a link to Wikipedia (which cites Nagura's paper). – Bill Dubuque Nov 02 '16 at 22:48
  • 2
    Even as a non-mathematician, that paper was great to read, interesting approach (though probably interesting mainly because I'm not well versed in the field). – Etheryte Nov 02 '16 at 23:54