3

Eg, solve $x^{11} \equiv 7 \pmod{61}$

The solution is $x \equiv 31 \pmod{61}$. But how do I get there? Brute checking every #, from $0 \to 60$ is very difficult?

Jimit
  • 171

2 Answers2

7

Hint $\ {\rm mod}\ 60\!:\ \color{#c00}{11^2\equiv 1},\ $ so $\,\ {\rm mod}\ 61\!:\ \left[\, x^{\large \color{#c00}{11}}\equiv 7\,\right ]^{\large \color{#c00}{11}}\!\Rightarrow\, x\equiv 7^{\large 11}\!\equiv 31$

Remark $\ $ If you are familar with modular fractions then the above can be viewed more intutively as simply raising $\,x^{11}\equiv 7\pmod{61}\,$ to the power $\,\frac{1}{11}.\,$ By Fermat, the exponents are determined mod $60,\,$ and $\,\dfrac{1}{11}\equiv 11\pmod{60},\,$ which yields said solution.

Bill Dubuque
  • 272,048
2

All equivalences $\bmod 61$

\begin{align} x^{11} &\equiv 7 \\ x^{22} &\equiv 49 \equiv -12 \\ x^{44} &\equiv 144 \equiv 22 \\ x^{66} &\equiv -264 \equiv -20 \quad \equiv x^{6} \text{ by Fermat's Little Theorem}\\ x^{12} &\equiv 400 \equiv 34 \\ x &\equiv 34 \cdot 7^{-1} \equiv 34\cdot 35 \equiv 1190 \equiv 31 \end{align}

The only involved part there being finding $7^{-1} \equiv 35 \bmod 61$, which I quickly got by observing $7\cdot9 \equiv 2 $ and so $7\cdot 36 \equiv 8 $ .

Check: $31^2 \equiv 961 \equiv 46 \equiv -15 \\ 31^4 \equiv 225 \equiv 42 \equiv -19\\ 31^5 \equiv -589 \equiv 21 \\ 31^{10} \equiv 441 \equiv 14 \\ 31^{11} \equiv 434 \equiv 7 \quad \checkmark$

Joffan
  • 39,627