(Note that I am a high school student and bad at maths. Please explain your answers thoroughly.)
And the man asked for grains of rice. He wanted one grain of rice on the first square of the chess board, two grains on the second, four grains on the third, eight grains on the fourth, so on and so on. I suppose you could ask a mathematics teacher if you really wished to learn how many pieces the man had after that was done for every square of the chess board.
Okay, so in school we were having some moral assembly or whatever, I didn't listen, too busy thinking about a more mathematical way to solve the problem above than just doubling, adding, etc. I can't ask a teacher yet... I need to work this out myself!
I'm an idiot, so I wanted help, and I was hoping someone on mathematics SE could help me think of a good mathematical way of solving this. Suppose there are 64 squares on the chess board. Argh! Damn this, I just found out that its a duplicate. Oh well. The answers on the question have to little an explanation.
Okay, there's 64 squares on our imaginary chessboard, and I'm trying to work out the thing above in a more mathematical way than just one by one, doubling it over and over again. So, if there is a more mathematical way of doing this, could someone tell me what it is and explain it.
Thanks!
$\sum_{n=1}^{64}2^n$
– JAP Oct 31 '16 at 18:21