There is a way to see that $\lim \frac{k}{\sqrt[k]{k!}}=e$ from these definitions?
$$e=\lim\left(1+\frac1k\right)^{\frac1k};\quad e=\sum\frac1{k!}$$
If it is not possible, how to deal with the limit of the title to get it limit? Thank you.
There is a way to see that $\lim \frac{k}{\sqrt[k]{k!}}=e$ from these definitions?
$$e=\lim\left(1+\frac1k\right)^{\frac1k};\quad e=\sum\frac1{k!}$$
If it is not possible, how to deal with the limit of the title to get it limit? Thank you.
We can use the fact that if $a_n>0$ for all $n\ge1$ and the sequence $\frac{a_{n+1}}{a_n}$ converges in $[0,\infty]$, then $$ \lim_{n\to\infty}a_n^{1/n}=\lim_{n\to\infty}\frac{a_{n+1}}{a_n} $$ (see this answer).
We have that $$ \frac n{\sqrt[n]{n!}}=\biggl(\frac{n^n}{n!}\biggr)^{1/n} $$ and let us denote $a_n=n^n/n!$. Then $$ \frac{a_{n+1}}{a_n}=\frac{(n+1)^{n+1}n!}{(n+1)!n^n}=\frac{(n+1)^n}{n^n}=\biggl(1+\frac1n\biggr)^n\to e\quad\text{as}\quad n\to\infty. $$ Hence, $$ a_n^{1/n}=\frac n{\sqrt[n]{n!}}\to e\quad\text{as}\quad n\to\infty. $$
Hint
(it does not follow directly from your definitions though)
You can use Stirling formula:
$$k!\underset{k\to\infty}{\sim} \sqrt{2\pi k}\frac{k^k}{e^k}.$$
Using $$ \ln\frac{k}{\sqrt[k]{k!}}=\ln k-\frac1k\ln(k!)=-\sum_{i=1}^{k}\frac{1}{k}\ln\frac{i}{k}\to-\int_0^1\ln xdx=1$$ as $k\to\infty$, one has $$ \lim_{k\to\infty}\frac{k}{\sqrt[k]{k!}}=e. $$