$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\large\mathbf{\left. a\right)}}$
\begin{align}
&\left.\sum_{x_{1} = 0}^{\infty}\sum_{x_{2} = 0}^{\infty}
\sum_{x_{3} = 0}^{\infty}\sum_{x_{4} = 1}^{\infty}
\sum_{x_{5} = 1}^{\infty}\sum_{x_{6} = 1}^{\infty}
\bracks{\sum_{k = 1}^{6}x_{k} = n}
\right\vert_{\ x_{1},x_{2},x_{3}\ \mrm{even} \atop
x_{4},x_{5},x_{6}\ \mrm{odd}}
\\[5mm] = &\
\left.\sum_{x_{1} = 0}^{\infty}\sum_{x_{2} = 0}^{\infty}
\sum_{x_{3} = 0}^{\infty}\sum_{x_{4} = 1}^{\infty}
\sum_{x_{5} = 1}^{\infty}\sum_{x_{6} = 1}^{\infty}
\oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n + 1 - \sum_{k = 1}^{6}x_{k}}}\,
{\dd z \over 2\pi\ic}
\right\vert_{\ x_{1},x_{2},x_{3}\ \mrm{even} \atop
x_{4},x_{5},x_{6}\ \mrm{odd}}
\\[5mm] = &\
\oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n + 1}}\,
\pars{\sum_{x = 0}^{\infty}z^{2x}}^{3}\pars{\sum_{y = 0}^{\infty}z^{2y + 1}}^{3}
{\dd z \over 2\pi\ic} =
\oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n + 1}}\,
\pars{1 \over 1 - z^{2}}^{3}\pars{z \over 1 - z^{2}}^{3}
{\dd z \over 2\pi\ic}
\\[5mm] = &\
\oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n - 2}\pars{1 - z^{2}}^{6}}\,
{\dd z \over 2\pi\ic} =
\sum_{k = 0}^{\infty}{-6 \choose k}\pars{-1}^{k}
\oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n - 2k - 2}}\,
{\dd z \over 2\pi\ic}
\\[5mm] = &\
\sum_{k = 0}^{\infty}{k + 5 \choose 5}
\bracks{n - 2k - 2 = 1} =\ \bbox[15px,#ffe,border:1px dotted navy]{\ds{%
\left\{\begin{array}{lcl}
\ds{0} & \mbox{if} & \ds{n}\ \mbox{is}\ even
\\[2mm]
\ds{\bracks{n + 7}/2 \choose 5} & \mbox{if} & \ds{n}\ \mbox{is}\ odd
\end{array}\right.}}
\end{align}
$\ds{\large\mathbf{\left. b\right)}}$ is quite similar to
$\ds{\large\mathbf{\left. a\right)}}$.
\begin{align}
&\oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n + 1}}
\pars{\sum_{x = 0}^{12}z^{x}}^{5}\,{\dd z \over 2\pi\ic} =
\oint_{\verts{z}\ =\ 1^{-}}{\pars{1 - z^{13}}^{5} \over z^{n + 1}\pars{1 - z}^{5}}
\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\oint_{\verts{z}\ =\ 1^{-}}{1 \over z^{n + 1}}
\sum_{k = 0}^{\infty}{k + 4 \choose 4}x^{k}\sum_{\ell = 0}^{5}
{5 \choose \ell}\pars{-1}^{\ell}x^{13\ell}\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\sum_{\ell = 0}^{5}{5 \choose \ell}\pars{-1}^{\ell}\sum_{k = 0}^{\infty}
{k + 4 \choose 4}\bracks{k + 13\ell = n} =
\sum_{\ell = 0}^{5}{5 \choose \ell}\pars{-1}^{\ell}
{n - 13\ell + 4 \choose 4}\bracks{\ell \leq {n \over 13}}
\\[5mm] = &\ \color{#f00}{%
\sum_{\ell = 0}^{\left\lfloor n/13\right\rfloor}\pars{-1}^{\ell}{5 \choose \ell}{n - 13\ell + 4 \choose 4}}
\\[5mm] = &\
\left\{\begin{array}{ll}
\ds{n + 4 \choose 4} & \mbox{if} & \ds{0 \leq n \leq 12}
\\[3mm]
\ds{{n + 4 \choose 4} - 5{n - 9 \choose 4}} & \mbox{if} & \ds{13 \leq n \leq 25}
\\[3mm]
\ds{{n + 4 \choose 4} - 5{n - 9 \choose 4} + 10{n - 22 \choose 4}} & \mbox{if} & \ds{26 \leq n \leq 38}
\\[3mm]
\ds{{n + 4 \choose 4} - 5{n - 9 \choose 4} + 10{n - 22 \choose 4} -
10{n - 35 \choose 4}} & \mbox{if} & \ds{39 \leq n \leq 51}
\\[3mm]
\ds{{n + 4 \choose 4} - 5{n - 9 \choose 4} + 10{n - 22 \choose 4} -
10{n - 35 \choose 4} + 5{n - 48 \choose 4}} & \mbox{if} & \ds{52 \leq n \leq 60}
\\[3mm]
\ds{0} & \mbox{if} & \ds{n > 60}
\end{array}\right.
\end{align}
