1

Let $X_1, \ldots , X_n$ be i.i.d. sample from the absolute continuous distribution given by the p.d.f. $$f_{\theta}(x) = \begin{cases} \frac{4x^3}{\theta ^4},\qquad \text{if } 0\leq x \leq \theta\\ 0, \qquad \text{ otherwise } \end{cases}\quad,$$ where $\theta > 0$.

Find the maximum likelihood estimator of $\theta$.

So far I got: $$\mathcal{L_\theta}(x)=\prod\limits^n_{i=1}\frac{4x_i^3}{\theta ^4}=\theta^{-4n}4^n \left(\prod\limits^n_{i=1}x_i \right)^3.$$ $$\ln[\mathcal{L_\theta}(x)] \equiv -4n \ln (\theta) + n\ln 4 + 3\sum\limits^n_{i=1}\ln(x_i)$$ \begin{align}{\partial L(\theta) \over \partial \theta} =\frac{-4n}{\theta}=0\end{align} What can be the Maximum likelihood estimator for $\theta$ ? Thanks.

StubbornAtom
  • 17,052
Userabc
  • 315
  • Your likelihood function is incomplete - you've forgotten to include the fact that $\theta \ge x_i$ for each $i$. The complete function should be $\mathcal{L}\theta \cdot \prod [\theta \ge x_i]$, where $\mathcal{L}\theta$ is the function above and $[\cdot]$ is the indicator function. 2. In the range $\theta \ge \max x_i$, the corrected function and the original function agree, and you've determined that the likelihood function is positive and strictly decreasing. In the range $\theta < \max x_i$, it is zero once you include the correction. Ergo, the maximiser is $\theta^* = \max x_i$.
  • – stochasticboy321 Oct 30 '16 at 21:03
  • https://math.stackexchange.com/q/383587/321264 – StubbornAtom Feb 06 '20 at 19:46