4

What is $$I=\int _0 ^\infty \log\left(x+\frac{1}{x}\right)\frac{1}{1+x^2}dx$$ At first I thought it was easy but couldnt figure out a good substitution,then tried out IBP but that too leads to messy integrations then did $x\mapsto x^{-1}$ to get $\log(x+\frac{1}{x})\frac{x^2+1-1}{1+x^2}$ then split it to get $2I=\log(x+\frac{1}{x})$ i thought it was integrable and could get a definite value but Integral calculator says the function is divergent . So i am now in a dilemma whether the question is correct or am i missing some good substitution. Also seeing the limits of integration I am thinking of using the concepts of limits .

amWhy
  • 209,954
  • Are you trying to find the value, or to decide if the integral converges? – Martin Argerami Oct 30 '16 at 17:49
  • The integral can be written thus: $$ \int_0^\infty \log\left(x+\frac 1 x \right) \left(\frac 1 {\dfrac 1 x + x} \right) , \frac{dx}x. $$ Then do a substitution: $u = 1/x$, so that $-du/u = dx/x.$ The integral then becomes $$ \int_\infty^0 \log \left( \frac 1 u + u \right) \left( \frac 1 {u + \dfrac 1 u} \right) \frac{(-du)} u. $$ Thus it is invariant under your proposed substitution. This suggests that the integral from $0$ to $1$ is the same as that from $1$ to $\infty,$ so you're looking for $\displaystyle 2\int_1^\infty.$ I haven't gone beyond that yet. $\qquad$ – Michael Hardy Oct 30 '16 at 18:21

3 Answers3

8

One may write $$ I=\int _0^\infty \frac{\log(1+x^2)}{1+x^2}dx-\int _0^\infty \frac{\log x}{1+x^2}dx, $$ by the change of variable $x \to 1/x$, one has $$ \int _0^\infty \frac{\log x}{1+x^2}dx=-\int _0^\infty \frac{\log x}{1+x^2}dx=0, $$ by the change of variable $x=\tan \theta$, one gets $$ \int _0^\infty \frac{\log(1+x^2)}{1+x^2}dx=\!\int _0^{\large \frac{\pi}2} \!\frac{\log(\cos^{-2} \theta)}{1+\tan^2 \theta}(1+\tan^2 \theta)d\theta=-2\int _0^{\large \frac{\pi}2}\! \log(\cos \theta) \:d \theta=\pi \log 2, $$ where we have used a well-known result.

Finally,

$$ I=\int _0^\infty \frac{\log \left(x+\frac1x \right)}{1+x^2}dx=\pi \log 2. $$

Olivier Oloa
  • 120,989
7

Another method: Let $$ I(\alpha)=\int _0 ^\infty \log\left(\alpha^2 x+\frac{1}{x}\right)\frac{1}{1+x^2}dx.$$ Then $I(1)=I, I(0)=0$. Note $$ I'(\alpha)=2\alpha\int _0 ^\infty \frac{x^2}{\alpha^2 x^2+1}\frac{1}{1+x^2}dx=\frac{\pi}{1+\alpha} $$ and hence $$ I(1)=\int_0^1\frac{\pi}{1+\alpha}d\alpha=\pi\log2. $$

xpaul
  • 44,000
1

Letting x=\tan \theta yields

$$ \begin{aligned} I &=\int_0^{\frac{\pi}{2}} \ln \left(\tan \theta+\frac{1}{\tan \theta}\right) d \theta \\ &=\int_0^{\frac{\pi}{2}} \ln \left(\frac{1}{\cos \theta \sin \theta}\right) d \theta\\ &=-\int_0^{\frac{\pi}{2}} \ln \cos \theta d \theta-\int_0^{\frac{1}{2}} \ln \sin \theta d \theta \\&=\pi \ln 2 \end{aligned} $$

where the last answer using the results $\int_0^{\frac{\pi}{2}} \ln \cos\theta d \theta =\int_0^{\frac{\pi}{2}} \ln \sin \theta d \theta =-\frac{\pi}{2} \ln 2$.

Lai
  • 20,421