The answer is $2(\mathbf{X} - \mathbf{A}^T)$.
You have $||\mathbf{X}^T - \mathbf{A}||_F^2 = trace((\mathbf{X}^T - \mathbf{A})(\mathbf{X}^T - \mathbf{A})^T) = trace((\mathbf{X}^T - \mathbf{A}) (\mathbf{X} - \mathbf{A}^T)) = trace(\mathbf{X}^T \mathbf{X} - \mathbf{X}^T \mathbf{A}^T - \mathbf{AX} + \mathbf{A}\mathbf{A}^T) = trace(\mathbf{X}^T \mathbf{X}) - trace(\mathbf{X}^T\mathbf{A}^T) - trace(\mathbf{AX}) + trace(\mathbf{A}\mathbf{A}^T)
=trace(\mathbf{X\mathbf{X}^T}) - trace((\mathbf{AX})^T) - trace(\mathbf{AX}) + trace(\mathbf{A}\mathbf{A}^T) = trace(\mathbf{X\mathbf{X}^T}) - 2trace(\mathbf{AX}) + trace(\mathbf{A}\mathbf{A}^T)$.
Keep in mind that $trace(\mathbf{AB}) = trace(\mathbf{BA}))$, where $\mathbf{B}$ is a matrix, and $trace(\mathbf{A}^T) = trace(\mathbf{A})$.
Then we have:
$\frac{\partial (trace(\mathbf{X}\mathbf{X}^T))}{\partial \mathbf{X}} = 2\mathbf{X}$.
$\frac{\partial (trace(\mathbf{AX}))}{\partial \mathbf{X}} = \frac{\partial (trace(\mathbf{XA}))}{\partial \mathbf{X}} = \mathbf{A}^T$.
$\frac{\partial (trace(\mathbf{A}\mathbf{A}^T))}{\partial \mathbf{X}} = 0$
Therefore, $\frac{\partial ||\mathbf{X}^T - \mathbf{A}||_F^2}{\partial \mathbf{X}} = 2(\mathbf{X} - \mathbf{A}^T)$.