I want to find $\sum\limits_{k=0}^{\infty} \dfrac{1}{k^4+1}$ via residue theorem. Especially form of cotangent or tangent functions.
Asked
Active
Viewed 142 times
1
-
2http://math.stackexchange.com/questions/384780/closed-form-for-sum-n-infty-infty-frac1n4a4/384839#384839 – Ron Gordon Oct 30 '16 at 11:28
-
http://www.supermath.info/InfiniteSeriesandtheResidueTheorem.pdf – Marco Cantarini Oct 30 '16 at 12:13
-
Also http://math.stackexchange.com/questions/305820 – mrf Oct 30 '16 at 12:15
-
Wow amazing! Thanks guys!! – phy_math Oct 30 '16 at 12:17
-
1Possible duplicate of How do I calculate $\sum_{n\geq1}\frac{1}{n^4+1}$? – Martin R Oct 30 '16 at 12:47
1 Answers
1
Hint
$$\sum_{n\geq1}\frac{1}{n^4-a^4} = \frac{1}{2a^2}-\frac{\pi}{4 a^3}(\cot \pi a+\coth \pi a)$$
Hence for $a^4 = 1$...

Enrico M.
- 26,114